翻訳と辞書
Words near each other
・ Homogamy (biology)
・ Homogamy (sociology)
・ Homogeneity (disambiguation)
・ Homogeneity (physics)
・ Homogeneity (statistics)
・ Homogeneity and heterogeneity
・ Homogeneous (chemistry)
・ Homogeneous (large cardinal property)
・ Homogeneous alignment
・ Homogeneous broadening
・ Homogeneous catalysis
・ Homogeneous charge compression ignition
・ Homogeneous coordinate ring
・ Homogeneous coordinates
・ Homogeneous differential equation
Homogeneous distribution
・ Homogeneous function
・ Homogeneous isotropic turbulence
・ Homogeneous polynomial
・ Homogeneous space
・ Homogeneous tree
・ Homogeneous variety
・ Homogeneously staining region
・ Homogeneously Suslin set
・ Homogenes
・ Homogenes albolineatus
・ Homogenes leprieurii
・ Homogenes mimus
・ Homogenes rubrogaster
・ Homogenic


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Homogeneous distribution : ウィキペディア英語版
Homogeneous distribution
:''Not to be confused with uniform distribution''
In mathematics, a homogeneous distribution is a distribution ''S'' on Euclidean space R''n'' or } that is homogeneous in the sense that, roughly speaking,
:S(tx) = t^m S(x)\,
for all ''t'' > 0.
More precisely, let \mu_t : x\mapsto x/t be the scalar division operator on R''n''. A distribution ''S'' on R''n'' or } is homogeneous of degree ''m'' provided that
:S() = t^mS()
for all positive real ''t'' and all test functions φ. The additional factor of ''t''−''n'' is needed to reproduce the usual notion of homogeneity for locally integrable functions, and comes about from the Jacobian change of variables. The number ''m'' can be real or complex.
It can be a non-trivial problem to extend a given homogeneous distribution from R''n'' \ to a distribution on R''n'', although this is necessary for many of the techniques of Fourier analysis, in particular the Fourier transform, to be brought to bear. Such an extension exists in most cases, however, although it may not be unique.
==Properties==
If ''S'' is a homogeneous distribution on R''n'' \ of degree α, then the weak first partial derivative of ''S''
:\frac
has degree α−1. Furthermore, a version of Euler's homogeneous function theorem holds: a distribution ''S'' is homogeneous of degree α if and only if
:\sum_^n x_i\frac = \alpha S.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Homogeneous distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.